In a previous post, I formulated an argument based on a theorem that if ¬◊¬(φ → ψ) and ◊(φ ∧ χ) are provable, then ◊(ψ ∧ χ) is provable. In this post, I prove the theorem.
THEOREM If ¬◊¬(φ → ψ) and ◊(φ ∧ χ) are provable, then ◊(ψ ∧ χ) is provable.
- ¬◊¬(φ → ψ)
- ◊(φ ∧ χ)
- ◊φ *
- ◊χ *
- ◊φ → ψ **
- ψ
- |¬◊(ψ ∧ χ)
- |¬◊¬(χ → ¬ψ) **
- |◊χ → ¬ψ
- |¬ψ
- |ψ ∧ ¬ψ
- ◊(ψ ∧ χ)
LEMMA 1 If ◊(φ ∧ χ) is provable, then ◊φ is provable.
- ◊(φ ∧ χ)
- |¬◊φ
- |¬◊¬¬φ
- |¬◊¬(¬φ ∨ ¬χ) ***
- |¬◊(φ ∧ χ)
- |◊(φ ∧ χ) ∧ ¬◊(φ ∧ χ)
- ◊φ
LEMMA 2 If ¬◊¬(φ → ψ) is provable, then ◊φ → ψ is provable.
- ¬◊¬(φ → ψ)
- ¬◊¬(¬φ v ψ) ****
- ¬◊(φ ∧ ¬ψ) *****
- ¬(◊φ ∧ ◊¬ψ) *
- ¬◊φ ∨ ¬◊¬ψ
- |◊φ
- |¬¬◊φ
- |¬◊¬ψ
- |ψ
- ◊φ → ψ
Notes. * Assuming LEMMA 1. ** Assuming LEMMA 2. *** According to S5 AS2, because ¬◊¬ (¬φ → (¬φ ∨ ¬χ)), therefore ¬◊¬¬φ → ¬◊¬(¬φ ∨ ¬χ). **** Material Implication. ***** De Morgan’s Theorems.
Copyright © 2024 Lam Fu Yuan, Kevin. All rights reserved.