Proof 20200424

Logic
Philosophy
Author

Lam Fu Yuan, Kevin

Published

May 30, 2020

In a previous post, I formulated an argument based on a theorem that if ¬◊¬(φ → ψ) and ◊(φ ∧ χ) are provable, then ◊(ψ ∧ χ) is provable. In this post, I prove the theorem.

THEOREM If ¬◊¬(φ → ψ) and ◊(φ ∧ χ) are provable, then ◊(ψ ∧ χ) is provable.

  1. ¬◊¬(φ → ψ)
  2. ◊(φ ∧ χ)
  3. ◊φ *
  4. ◊χ *
  5. ◊φ → ψ **
  6. ψ
  7. |¬◊(ψ ∧ χ)
  8. |¬◊¬(χ → ¬ψ) **
  9. |◊χ → ¬ψ
  10. |¬ψ
  11. |ψ ∧ ¬ψ
  12. ◊(ψ ∧ χ)

LEMMA 1 If ◊(φ ∧ χ) is provable, then ◊φ is provable.

  1. ◊(φ ∧ χ)
  2. |¬◊φ
  3. |¬◊¬¬φ
  4. |¬◊¬(¬φ ∨ ¬χ) ***
  5. |¬◊(φ ∧ χ)
  6. |◊(φ ∧ χ) ∧ ¬◊(φ ∧ χ)
  7. ◊φ

LEMMA 2 If ¬◊¬(φ → ψ) is provable, then ◊φ → ψ is provable.

  1. ¬◊¬(φ → ψ)
  2. ¬◊¬(¬φ v ψ) ****
  3. ¬◊(φ ∧ ¬ψ) *****
  4. ¬(◊φ ∧ ◊¬ψ) *
  5. ¬◊φ ∨ ¬◊¬ψ
  6. |◊φ
  7. |¬¬◊φ
  8. |¬◊¬ψ
  9. ◊φ → ψ

Notes. * Assuming LEMMA 1. ** Assuming LEMMA 2. *** According to S5 AS2, because ¬◊¬ (¬φ → (¬φ ∨ ¬χ)), therefore ¬◊¬¬φ → ¬◊¬(¬φ ∨ ¬χ). **** Material Implication. ***** De Morgan’s Theorems.

Copyright © 2024 Lam Fu Yuan, Kevin. All rights reserved.